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A fitness landscape is a map between the genotype and its reproduc-
tive success in a given environment. The topography of fitness land-
scapes largely governs adaptive dynamics, constraining evolutionary
trajectories and the predictability of evolution. Theory suggests that
this topography can be deformed by mutations that produce sub-
stantial changes to the environment. Despite its importance, the
deformability of fitness landscapes has not been systematically stud-
ied beyond abstract models, and little is known about its reach and
consequences in empirical systems. Here we have systematically char-
acterized the deformability of the genome-wide metabolic fitness
landscape of the bacterium Escherichia coli. Deformability is quanti-
fied by the noncommutativity of epistatic interactions, which we
experimentally demonstrate in mutant strains on the path to an evo-
lutionary innovation. Our analysis shows that the deformation of
fitness landscapes by metabolic mutations rarely affects evolutionary
trajectories in the short range. However, mutations with large envi-
ronmental effects produce long-range landscape deformations in dis-
tant regions of the genotype space that affect the fitness of later
descendants. Our results therefore suggest that, even in situations
in which mutations have strong environmental effects, fitness land-
scapes may retain their power to forecast evolution over small mu-
tational distances despite the potential attenuation of that power
over longer evolutionary trajectories. Our methods and results pro-
vide an avenue for integrating adaptive and eco-evolutionary dy-
namics with complex genetics and genomics.

fitness landscapes | eco-evolutionary feedbacks | ecologically mediated
gene interactions | gene × environment × gene interactions |
noncommutative epistasis

When a new genotype appears in a population its re-
productive success is largely governed by the environment.

Although the environment is often thought of as an external
driver of natural selection, it can also be shaped by the evolving
population itself, for instance through its metabolic activity or
through interactions with the abiotic habitat or other species (1–
3). These population-driven environmental changes can in turn
modify the fitness effects of future mutations, closing in an eco-
evolutionary feedback loop (4). Eco-evolutionary feedbacks are
well documented in natural (5) and experimental (6) pop-
ulations, and at all scales of biological organization: from the
cellular scale [e.g., in the evolution of cancer (7) and microbial
populations (8)] to the organismal scale in animal (9) and plant
evolution (10). Given the growing evidence that evolutionary and
ecological processes, including niche construction, occur on
similar timescales, there is a critical need to understand the ge-
nomic bases of these eco-evolutionary feedbacks (11).
The “map” between each genotype and its adaptive value in a

given environment is known as the “fitness landscape” (12). Because
populations actively modify their environment, new mutations can,
in principle, have environmental as well as fitness effects. Thus,
evolving populations may dynamically reshape (“deform”) the fit-
ness landscapes on which they are adapting (13, 14). Although they
are often used only metaphorically to depict or visualize adaptation,
fitness landscapes are a major determinant of evolution. In partic-
ular, the topography of a fitness landscape (i.e., the location of

fitness peaks and valleys and their connectivity) plays a pivotal role,
as it governs the accessibility of evolutionary trajectories (15–17), the
role of population structure on evolution (18), the degree of evo-
lutionary convergence among populations (19), the expected role of
drift, selection, and sex in the evolutionary process (20, 21), the
discovery of evolutionary innovations (22), and the predictability of
evolution (23), a subject of growing importance for the management
of pathogens and cancer treatment (24–28). Given the fundamental
role that fitness landscapes play in adaptation, if populations do
indeed change the topography of their fitness landscapes as they
evolve, it is imperative to understand precisely how. Do mutations
that alter the environment generally also alter the fitness of all
subsequent mutations or only a subset of them? If the latter, where
are those deformations localized in the genotype space, and how
strong are they? All these questions remain open, as the deform-
ability (or “rubberness”) of fitness landscapes has never been sys-
tematically studied in empirical systems at the genomic scale.
Substantial experimental evidence suggests that microbial fitness

landscapes are likely to exhibit deformability (29–33), making mi-
crobes an ideal system for addressing this issue. Microbial metab-
olism leads to large-scale environmental construction through the
uptake and release of metabolites (30, 32). Which nutrients are
taken up, which byproducts are released, and in what amounts, are
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all governed by the structure of the metabolic network and
therefore by the genotype (34, 35). As a result, new mutations that
change the metabolic network can also change the patterns of
metabolic uptake and secretion, altering the environment and
potentially also altering the fitness of future mutations (32).
Microbial physiology and growth can be explicitly simulated using

genome-scale metabolic models (36–38). Due to their excellent
predictive capabilities (36) and utility for easily and rapidly screening
millions of genotypes, these models have been successfully used to
systematically explore the genotype space (39). Recent advances
in dynamic metabolic modeling make it possible to explicitly simu-
late the growth of microbial communities and their environmental
feedbacks with evolution (40, 41), making genome-wide dynamic
metabolic modeling of microbial genotypes a promising method to
examine the deformability of fitness landscapes (Fig. 1A).
Here, we first use metabolic modeling to show that the envi-

ronmental effect of new mutations can make genetic interactions
(or “epistasis”) noncommutative or dependent on the order in
which mutations occur. We then use evolved strains from one of
the populations in Lenski and coworkers’ (42, 43) Escherichia coli
Long-Term Evolution Experiment (LTEE) to experimentally
demonstrate the presence of noncommutative epistasis and
quantitatively validate the predictive capabilities of our model. We
then scale up our study to include tens of millions of genotypes
from the metabolic genotype space. By systematically screening
the in silico metabolic fitness landscape of E. coli, we are able to
offer a precise view of how deformability by eco-evolutionary
feedbacks plays out over short and long mutational distances.

Results
Noncommutative Epistasis Characterizes Fitness Landscape Deformability.
To investigate the effect of metabolic secretions on the fitness
landscape, we used dynamic flux balance analysis (dFBA) to de-
termine the distribution of fitness and environmental effects of
new mutations in the local mutational neighborhood of a recently
curated, genome-scale metabolic model of E. coli (36). Our screen
included all possible single-addition and -deletion mutants (Ma-
terials and Methods), whose growth was simulated on anaerobic
glucose medium until saturation was reached. Of all nonessential
mutations, 147 (3.3%) affected growth rate either positively or
negatively (Fig. 1B). All these mutations also altered the chemical
composition of the environment (Materials and Methods; also see
Fig. 1C for a representative subset and SI Appendix, Fig. S1 for the
full set), and the magnitude of the environmental and fitness ef-
fects were strongly correlated (Pearson’s ρ = 0.61, P < 10−6) (SI
Appendix, Fig. S2). This suggests that the extracellular environ-
ment will change as new mutations fix in the population, which
could in turn alter the fitness effects of new mutations, thus
deforming the fitness landscape.
We explored the extent to which this fitness landscape may be

deformed by the effect of metabolic secretions using a dataset that
consisted of ∼107 single and double mutants, representing the en-
tire second-order metabolic mutational neighborhood of E. coli.
The fitness of each mutant (M) was determined in competition with
its immediate ancestor (A) as FM

(A) = log([X′M/XM]/[X′A/XA]) (42,
44),where XA and XM represent the initial densities of ancestor and
mutant and X′A and X′M represent their final respective densities
after 10 h of competition (Materials and Methods). All competitions
were performed at an initial mutant frequency of 0.01. Using this
measure, the fitness effects of two mutations are expected to
combine additively when they act independently (Fig. 1D). As
shown in Fig. 1E, when two mutations without an environmental
effect interact with one another, epistasis (e) will cause the fitness of
the double mutant to deviate from additivity. This is the usual
definition of epistasis in the literature, which is invariant as to the
order in which mutations occur (16). In contrast, when at least one
of the single mutants has an environmental effect, the double
mutant experiences a different extracellular environment depend-
ing on which of the two single mutants was its immediate ancestor.
For example, a double mutant could cross-feed on the byproducts
of one of its possible single-mutant ancestors but not on the

byproducts of the other (Fig. 1F). The result is a gene-by-
environment-by-gene (G × E × G) interaction in which the mag-
nitude of epistasis may depend on the order in which mutations
occur. In other words, epistasis becomes noncommutative. The
value of that noncommutative fitness shift (δ) characterizes the
deformation of a two-step mutational trajectory (Fig. 1F).
Noncommutative epistasis and fitness intransitivity are closely

related but not identical concepts (SI Appendix, Fig. S3) (45). In its
simplest, qualitative formulation, “intransitivity” refers to situa-
tions in which the fitness of three mutants (A, B, C) in pairwise
competition are nonhierarchical (i.e., A invades B, B invades C,
and C invades A). A less stringent, quantitative definition of in-
transitivity has been applied when the relative fitness between a
mutant and its ancestor cannot be predicted by the sum of cu-
mulative fitness gains along a mutational trajectory (45). This
definition is close to but distinct from the concept of non-
commutativity (Fig. 1). Noncommutativity quantifies the differ-
ence in cumulative fitness gains along two different mutational
trajectories without regard for the fitness of the final point of the
trajectory in competition with the original ancestor (SI Appendix,
Fig. S3). Interestingly, noncommutativity and intransitivity are
mathematically related to one another but must be estimated
using independent experiments (SI Appendix, Fig. S3). Genotypes
along an evolutionary trajectory usually compete with their im-
mediate mutational ancestors rather than with their original an-
cestral strain (29). Therefore, noncommutativity is a suitable
metric for characterizing fitness landscape deformability, while
intransitivity can be more suitable for ecological questions, such as
the possibility of coexistence of different genotypes (46, 47).

Deformability in the Path to an Evolutionary Innovation in E. coli. To
experimentally validate and assess the potential relevance of non-
commutative epistasis as a metric of fitness landscape deformability,
we studied two mutations on the path to the evolutionary innovation
of strong aerobic growth on citrate (Cit++) in the Ara-3 population
of the LTEE (43). The two principal mutations underlying this
phenotype are known to have profound ecological consequences,
suggesting that noncommutative epistasis may be present (Fig. 2A).
The first mutation is a tandem amplification overlapping the citrate
fermentation operon, cit, which occurred after 31,000 generations.
This amplification caused aerobic expression of the CitT trans-
porter, producing a weak citrate growth phenotype (Cit+) (48). CitT
is an antiporter that imports citrate, present in large amounts in the
LTEE DM25 growth medium, while exporting intracellular C4-
dicarboxylate TCA intermediates, e.g., succinate and malate (34),
thereby increasing their concentration in the extracellular environ-
ment. A subsequent mutation causes high-level, constitutive ex-
pression of DctA, a proton-driven dicarboxylic acid transporter.
This mutation refines the Cit+ trait to Cit++ by allowing recovery of
the C4-dicarboxylates released into the medium by both the pro-
genitor and the double mutant itself during growth on citrate (Fig.
2A) (49). We reasoned that these mutations together enable the
exploitation of environments built by progenitor strains, producing a
stronger increase in fitness than expected in the absence of envi-
ronmental construction (Fig. 2B). In contrast, had the DctA mu-
tation occurred before the CitT-activating duplication, it would have
conferred no fitness benefit and would not have produced any
changes in the environment relative to the ancestor (Fig. 2B).
We tested this prediction by performing competitive fitness as-

says with different combinations of a spontaneous Cit– mutant and
dctA– knockout strains derived from ZDB89, a 35,000-generation
Cit++ clone that possesses both the DctA-activating and CitT-
activating mutations (Materials and Methods). Competitions were
carried out with equal volumes of each combination of competitors,
and relative fitness was determined using colony counts obtained
after 0 and 24 h of growth (42). In parallel, we used our dFBA
model to simulate these competitions, relying solely on known
parameters from the experiments and on published parameters
pertaining to the physiology of E. coli [(Materials and Methods) 41,
50]. Confirming our expectations, the dFBA model predicts strong
noncommutative epistasis (δ = 1.50) (Fig. 2C). This is confirmed by
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the experimental results (δ = 1.78 ± 0.15) (Fig. 2D). The agreement
between the empirically calibrated computational model and the
experiments is not only qualitative but also is quantitative: With no
fitting parameters, dFBA is predictive of the outcome of the ex-
perimental pairwise competitions, explaining 52% of the variance in
colony counts from all experiments (n = 120) (SI Appendix, Fig. S4).

Short-Range Deformability in E. coli Is Weak and Rare. Although the
above examples demonstrate the potential presence of fitness
landscape deformability, its pervasiveness in empirical fitness
landscapes remains unclear. To address this question, we screened
the entire first- and second-order mutational neighborhood of E.
coli using our computational model (Fig. 3A). In Fig. 3B we
represent all pairs of mutations that exhibit deformability as nodes
in a network that are connected if their noncommutative fitness
shift (δ) is larger than 1% of the fitness effects (FMAX; also see SI
Appendix, Fig. S5). These represent only a small subset (203/3,343,
or 6.1%) of all epistatic interactions, which for the most part are
not altered by the environmental effects of mutations.
Noncommutative interactions also tend to be unevenly dis-

tributed: Most mutations do not deform the fitness of any other
mutation, and only 15 (0.3%) of them deform the fitness of five
or more other mutations (Fig. 3 B and C). These few highly
connected hubs on the network tend to be the mutations with the
strongest environmental effects (Pearson’s ρ = 0.79, P < 10−6)
(SI Appendix, Fig. S5). Noncommutative epistasis also tends to
be small in magnitude (Fig. 3D); only 1.6% (55/3,343) of epi-
static pairs have a noncommutative epistatic shift larger than
10% of the total fitness increase (δ/FMAX > 0.1) (Fig. 3D). This
reveals that the deformability of the local mutational neighbor-
hood of the E. coli metabolic landscape is generally weak, rare,
and highly anisotropic (i.e., nonhomogeneous), with deforma-
tions limited to localized directions in genotype space.

Long-Range Deformability of the E. coli Metabolic Fitness Landscape.
The low deformability of the local mutational neighborhood
could be explained by the strong genetic similarity between the
mutants and the ancestral genotype: Genotypically close de-
scendants will rarely be able to use metabolites that are dis-
carded by their immediate ancestors. By the same logic, one may
predict that over longer mutational distances metabolic differ-
ences might accumulate that enable the use of extracellular
metabolites that are left as a “legacy” by previous mutations.
Thus, we hypothesize that changes to the extracellular environ-
ment produced by a given mutation will primarily deform the
fitness landscape at distant positions on the genotype space.
To test this hypothesis, we set out to introduce a mutation with

a strong environmental effect and measure the deformation it
causes at different distances in the genotype space. We chose the
ACKr (acetate kinase) mutation (the deletion of the acetate ki-
nase gene), which as shown in Fig. 1C modifies the environment
by releasing large amounts of lactate at the expense of lower se-
cretions of formate, acetate, and ethanol. To quantify the de-
formation introduced by this mutation, we compared the fitness of
thousands of genotypes at increasing mutational distances from
the ancestor in competition with either the ancestor E. coli model
(A) or the ACKr mutant (M) (Fig. 4A). The deformation in-
troduced by M at genotype G is thus quantified by the parameter
ΔFitness = jFG

(M) − FG
(A) − FM

(A)j (Fig. 4B). Consistent with our
hypothesis, and as shown in Fig. 4 B and C, we found that the
fitness landscape deformation ΔFitness introduced by the ACKr

A

C

E

B

D

F

Fig. 1. Measuring deformability in the E. coli metabolic fitness landscape. (A)
Schematic depiction of dFBA simulations. Given an input in the form of nutri-
ents, metabolic fluxes through an explicit and empirically curated metabolic
model are optimized to maximize the biomass growth yield. The optimal
metabolic fluxes producemetabolic byproducts that are released to the external
environment, becoming part of future inputs. (B) A subset of genotypes dif-
fering from our E. coli metabolic model by a single mutation (an added or
deleted reaction), colored according to their effect on fitness in competition
with the ancestor (A). (C ) Environmental effects of a subset of mutants
expressed as the variation in the profile of secreted metabolites compared with
the ancestral E. coli genotype (computed as log-modulus transformed difference
in the amount of a given secreted molecule; Materials and Methods). Mutant
labels are given in Biochemical Genetic and Genomic (BiGG) database notation.
(D) Two loci fitness landscapes in the absence of gene–gene interactions in
which the fitness effect of each mutation is the same in all genetic backgrounds.
The fitness of each genotype was calculated in direct competition with its im-
mediate ancestor. Mutations A and B correspond to the addition of GLYCL_2
(glycine cleavage system) and AIRCr (phosphoribosylaminoimidazole carboxyl-
ase), respectively. (E) Two-loci fitness landscapes with gene–gene interactions

giving rise to epistasis (e). Mutations A and B were SO3R (sulfite reductase)
and PAPSSH (phosphoadenylylsulfatase), respectively, simulated in a con-
stant environment. (F) Two-loci fitness landscapes in which one of the mu-
tants transforms the environment, leading to cross-feeding toward the
double mutant. Mutations A and B correspond to the addition of PAPSSH
and HADPCOADH (3-hydroxyadipyl-CoA dehydrogenase). In addition to
regular epistasis, this led to a noncommutative epistatic shift (δ = eA,B − eB,A).
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mutation is negligible at short genotypic distances from it (e.g., 16
mutations or less), but it becomes stronger at longer distances.
Fifteen other mutants in addition to ACKr were also tested, with

similar results (SI Appendix, Fig. S7). Furthermore, by comparing
the growth rate of thousands of genotypes in the environments
constructed by A and M (noted by EA and EM, respectively), we
found that increasingly distant genotypes become increasingly
sensitive to the differences between the two environments (Fig.
4D and SI Appendix, Fig. S8). This provides an explanation for the
observed pattern of fitness landscape deformation as a function of
genotypic distance.
What are the genetic mechanisms underlying the long-range

environmental effects of new mutations on growth rate? One
possibility could be an increased probability of sampling mutations
that produce a difference in growth rate between EA and EM.
Alternatively, this effect could be caused by genetic interactions
between two or more mutations that allow distant genotypes to
use differently the resources secreted by A and M. To discriminate
between these two possibilities, we compared the observed dif-
ference in growth rates (Fig. 4D, gray line) with the difference
expected if mutations do not interact (Fig. 4D, red line) (Materials
and Methods). As shown in Fig. 4D, the null model that only in-
corporates increased sampling of mutations at growing mutational
distances (while assuming no interactions) vastly underestimates
the observed growth difference between EA and EM and thus is
insufficient to explain our results. This suggests that, although
both mechanisms are present, interactions between mutations
dominate the deformation of the fitness landscape at large mu-
tational distances (see also SI Appendix, Fig. S8).
To mechanistically illustrate the role of complex genetic in-

teractions in long-range landscape deformation, in Fig. 4E we
show an adaptive trajectory in which a first mutation (lactate
dehydrogenase; LDH) causes the release of lactate to the ex-
tracellular space. A complex metabolic innovation involving
several reaction additions [ATP synthase (ATPS), pyruvate for-
mate lyase (PFL), and ACKr] (51) is subsequently required to
confer the ability to metabolize this lactate (Fig. 4E; see also SI
Appendix, Fig. S8). Notably, lactate becomes metabolized only by
the final genotype, which contains all three required mutations.

A B

C D

Fig. 2. Noncommutative epistasis in the evolution of aerobic citrate use in
E. coli. (A) Function of the two transporters involved in the innovation of
strong aerobic growth on citrate (Cit++) in E. coli. CitT is an antiporter that
exchanges extracellular citrate for internal C4-dicarboxylates (e.g., succinate,
fumarate, and malate). DctA is a carboxylic acid transporter that imports C4-
dicarboxylates from the extracellular space into the cytoplasm. (B) The two
possible mutational trajectories leading to the Cit++ trait. If the mutation
leading to expression of citT (+citT) occurs first, it will transform the envi-
ronment leading to cross-feeding toward the double mutant. This should
not occur if the dctA overexpression mutation (+dctA) occurs first. (C and D)
Simulated (C) and experimentally measured (D) fitness landscapes in the
DM25 medium used in the LTEE (Materials and Methods). Experimentally
obtained values are reported as mean ± SEM (n = 10).

A B C

D

Fig. 3. Short-range deformability in E. coli is rare, weak, and directional. (A) Systematic exploration of the second-order mutational neighborhood of E. coli.
We exhaustively simulated every possible mutational trajectory starting from the ancestral (A) metabolism and ending in each double mutant. Non-
commutative epistasis (δ) was measured for each pair of mutants and was normalized by FMAX, i.e., the maximal cumulative fitness effect of the double
mutant: FMAX = max[ jFi(A) + Fij

(i)j, jFj(A) + Fij
(j)j ], where, e.g., Fx

(y) denotes the fitness of mutant x when invading its immediate ancestor y at low frequency
(Materials and Methods). (B) Network representation of all noncommutative epistatic pairs. Nodes represent mutations, and two nodes are joined by an edge
if δ/FMAX >0.01 for that pair. Node labels (BiGG database notation) are shown for hubs (mutations with more than four noncommutative interactions). (C)
Distribution of deformability for each gene in the network, measured as the number of other genes with which it has a noncommutative epistatic interaction.
(D) Strength of all noncommutative epistatic interactions, i.e., the percentage of epistatic pairs with δ/FMAX > T as a function of T.
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Discussion
Darwin (52) was perhaps the first to recognize that the environ-
ment experienced by an evolving population can also be shaped by
the population itself. Long neglected, this concept was revived by
Lewontin (1, 53), and has gained added momentum in recent
years as the important role played by eco-evolutionary feedbacks
in both ecology and evolution has become better appreciated (3, 4,
11). Due to technical limitations, experimental studies of eco-
evolutionary feedbacks and the adaptive dynamics models that
seek to explain them often lack explicit, genome-wide representa-
tions of the adaptive landscape, in particular with regard to complex
traits and gene–gene interactions (11). The exact state of the en-
vironment, which is intrinsically complex and multidimensional, is
also rarely measured experimentally or explicitly included in eco-
evolutionary models. In return, genome-wide genotype fitness maps
have largely ignored the effects of eco-evolutionary feedbacks, de-
spite early abstract models of species coevolution, which introduced
the idea of fitness landscape deformability (also referred to as
“rubberness,” refs. 13 and 54), and the many examples of their
importance in coevolutionary arms races and other forms of co-
evolution (55). This is particularly important in light of the argu-
ment, made by many authors, that the deformability of fitness
landscapes (or its consequences, in the form of frequency-
dependent selection) would erode their practical and conceptual
utility (56–58).
Our work empirically addresses this latter argument. Encour-

agingly, our results show that fitness landscapes may retain their
local properties in the presence of mutations that significantly
alter the environment. By systematically mapping an empirical
fitness landscape, we have found that ignoring deformability and
assuming a rigid landscape is a good approximation over short
genotypic distances. This is because closely related genotypes are
unlikely to differ from one another in their physiological response
to the built environment. In contrast, over longer mutational
distances, fitness landscapes are likely to be affected by environ-
mental construction, an effect that is shaped by complex genetic
interactions. This suggests an ecologically mediated mechanism by
which historical contingency may shape downstream evolution
even in clonal populations. In summary, our work suggests that,

depending on the scale at which they are examined, fitness land-
scapes can either behave as a fixed externally determined topog-
raphy on which adaptation proceeds, or become a dynamic
property of the populations adapting on them (57, 58).
One limitation of our study is the inability of our model to

predict changes in the sign of the fitness effect of a new muta-
tion. This is a common limitation of most FBA-based models
(but see refs. 59 and 60), as they do not consider the potential
costs of adding a new biochemical reaction, or of maintaining a
flux through it. These costs can arise in microbial cells either
through the cost of increasing genome size (61) or through the
cost of expressing the enzymes required for the new reaction.
Given the absence of such costs in our FBA model, a deletion
can never provide any advantage, and an addition will never be
detrimental. Costs have already been incorporated in non-
dynamic FBA models (59, 60), allowing the prediction of phe-
nomena such as overflow metabolism. One can certainly imagine
situations in which an addition that is detrimental due to its
maintenance cost could become beneficial in the presence of the
metabolic byproducts of its ancestor, leading to an ecologically
mediated inversion of fitness effect (or “sign-δ”). Incorporating
costs into a dynamic genome-scale modeling framework repre-
sents a promising future direction.
The idea that under frequency-dependent selection fitness

landscapes change as populations move on them has been con-
ceptually discussed and studied within the theoretical framework
of adaptive dynamics (13, 14, 62). A solution to the problem of
fitness landscape deformability was found in the formulation of
the invasion fitness landscape, i.e., the map between the relative
fitness S(x,y) of an invader with phenotype y against a resident
phenotype x (62). In principle our results and methods might allow
one to map an empirical invasion fitness landscape, at least locally.
However, one would need to identify a scalar phenotype that can
be mapped to the invasion success against a resident genotype in
the environment this resident constructs. Under what conditions
this is possible is an open question that lies beyond the scope of
this study, but it poses an interesting future challenge.
In line with this discussion, our results indicate that simulating

cellular adaptive dynamics with an explicit and biologically

A B

C

D

E

Fig. 4. Long-range deformability of the E. coli metabolic fitness landscape. (A) We performed random walks (length = 1,000 mutations) in genotype space
starting from an E. coli ancestor (A; gray) and first passing through a mutant (M; orange) with large environmental effect. (B and C) Fitness of mutants along
these random walks was measured in competition with A (gray) in the environment it generates (EA), as well as in competition with M (orange) in the envi-
ronment it generates (EM). In B we show the result for a single example of a random walk. Note that fitness in competition with M is shifted by the difference in
fitness between M and A so all observed differences in fitness are due to deformation (for any genotype G, ΔFitness = jFG(A) − FG

(M) − FM
(A) j). (C) Average

ΔFitness at increasing mutational distances from A in over n = 100 random walks (error bars represent SEM; n = 100). (D) Average difference (absolute value) in
growth rate between environments EM and EA (in grams of dry cell weight × h−1) at varying genotype distances (gray line; shading represents SEM; n = 1,000). In
red, we show the predicted difference in growth rates for a null model that assumes independent effects of mutations (Materials and Methods). (E) An example
of an adaptive trajectory showing complex genetic interactions in a long-range deformation. The addition of LDH leads to the release of lactate as a by-product.
Three additional mutations, ACKr, ATPS, and PFL, are required together for lactate to be used by a descendant genotype.
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realistic genome-wide representation of the genotype–phenotype
map is within reach. Such an approach will shed light into the
role played by dynamic niche construction in cellular evolution.
We believe that it will also create multiple opportunities to in-
corporate genomics into the study of eco-evolutionary dynamics
and thus reveal the genetic, biochemical, and environmental
constraints that simultaneously govern the ecology and evolution
of cellular populations.

Materials and Methods
Detailed materials and methods regarding reconstruction of the prokaryotic
genotype space, in silico simulations, fitness, environmental effects, and
deformability measurements and experiments and simulations related to
the LTEE can be found in SI Appendix. All data in this paper have been

deposited in a public repository and can be accessed at https://github.com/
vilacelestin/Bajicetal2018.
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